
Speech and Action: Integration of Action and Language
for Mobile Robots

Timothy Brick
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556, USA

tbrick@nd.edu

Paul Schermerhorn and Matthias Scheutz
Cognitive Science

Indiana University
Bloomington, IN 47401, USA

{pscherme,mscheutz}@indiana.edu

Abstract— We describe the tight integration of incremental
natural language understanding, goal management, and action
processing in a complex robotic architecture, which is required
for natural interactions between robots and humans. Specifi-
cally, the natural language components need to process utter-
ances while they are still spoken to be able to initiate feedback
actions in a timely fashion, while the action manager might
need information at various points during action execution
that must be obtained from humans. We argue that a finer-
grained integration provides much more natural human-robot
interactions and much more reasonable multitasking.

I. INTRODUCTION

Robot architectures are becoming so complex that, from
a software engineering point of view, it is virtually a
necessity to design and build them modularly. However,
the strict segregation of functionality is not without cost.
In humans, for example, action management and natural
language processing (NLP) are tightly integrated. Among
other advantages, this integration allows humans to respond
to spoken sentences (e.g., to nod in agreement or to begin
executing an order) even before they are complete; speech
processing continues as the response is carried out. This
ability can yield important advantages, as we argue below,
and, moreover, humans are accustomed to such responses and
will expect them when interacting with robotic agents. Yet,
without some integration of NLP and action management,
such responses can be difficult to achieve systematically.

We believe that, although it is important to maintain the
advantages of modular system design (the extreme instance
of integration being a monolithic system), a genuine integra-
tion of language and action processing is highly desirable.
Beyond the benefits to human-robot interaction, however,
there are other important reasons why one might be interested
in the integration of language and action. The genuine
integration of language and action processing at a fine-
grained time scale allows for rich interactions between them
at various levels, while maintaining the benefits of modular
design. Practically speaking, this can improve performance
on tasks that mobile robots are increasingly being asked to
perform (e.g., planetary exploration, as described below). We
describe the integration between NLP and action processing
in our system, and show how this integration can lead to
improved outcomes in a collaborative human-robot task.

The rest of the paper is laid out as follows. We begin with
a short discussion of background and prior work, and then an
overview of the various parts of our proposed system and the
mechanisms used for integration. We demonstrate the utility
of these mechanisms in a sample scenario (experiments
carried out in our lab with a robot and human subjects), and
discuss briefly the utility of integration in other scenarios. We
end with our conclusions and suggestions for future work.

II. BACKGROUND AND RELATED WORK

Language and action processing are tightly integrated in
humans. Recent evidence from neuroscience, in particular,
suggests that areas (like Broca’s area) previously assumed to
be responsible only for language processing are also involved
in action processing [9]. This tight integration of language
and action allows human speakers to control various body
parts (like their heads and hands) while speaking, tightly
synchronizing the movements of their bodies with production
of their speech. Similarly, it allows human listeners to
perform a variety of actions while still processing a sentence
(e.g., providing feedback to the speaker using nodding, shift
in eye gaze, changes in facial expressions, etc.).

Autonomous mobile robots that interact with humans
using natural language are thus faced with a fundamental
challenge: if their interactions with humans are supposed
to seem natural (i.e., human-like), then they will have to
be sensitive to the styles and cadences of human language
interactions, including the perception and production of
concomitant gestures and other actions while processing
utterances (both on the perception and production side).

Current architectures in robotics, however, typically treat
language processing and action control as functionally sep-
arate modules where information is exchanged only in the
form of block commands (generally the semantic meaning
of an entire utterance), and often times in a unidirectional
way (i.e., from language processing to action execution,
but not vice versa). More importantly, language processing
often proceeds in stages that deal with different aspects of
an utterance (from the phonological stage in which sounds
are translated into words, to the syntactic stage in which
the grammatical structure of an utterance is isolated, to
the semantic interpretation stage in which meanings are
determined). Clearly, such a stage-based approach to natural



language processing puts severe a priori restrictions on the
kinds of integration possible between language processing
and action management. For example, a listener’s head nod
(expressing the listener’s understanding of or agreement with
the meaning of the speaker’s utterance so far) provides
feedback to the speaker that can shape the way the speaker
continues the sentence. A stage-based system that needs
to finish processing the auditory signal before it is able
to analyze its meaning is unable, in principle, to provide
such feedback. Conversely, an action system that is carrying
out a command might profit from being able to generate a
natural language question if it determines that information
about some aspects of the command are missing. Further,
it may be possible to receive constraining feedback while
continuing to perform actions that will allow it to complete
the command (e.g., if grasping the only visible object of a
particular type reveals another object of that type that was
previously occluded and could be another candidate for the
grasping action).

The tight integration of action and language is most often
attempted in the pursuit of integrating language and vision.
Used in this way, action and visual processes are used to
constrain and enhance linguistic comprehension, learning,
and disambiguation. [6], for example, integrates action as
a support for visual learning from language. Other systems
are not designed with the intent of performing multipart
action sequences, but rather for other specific intents. For
example, [2] integrate action for the purposes of emulating
neurological data, here the neurological connectivity of the
visuomotor system. [5] integrate action and language with
a visual system in a different way; building internal repre-
sentations for real and imagined worlds for motor tasks and
answering “what-if” type questions. Again, these systems
integrate language and action for specific intents distinct
from the execution of multipart action sequences.

Fitzgerald, Firby, and Martin use action to constrain
language by utilizing a shared conceptual memory to pro-
vide action scripts, state data, and “facts” for language
disambiguation (e.g., see [3]). For example, the violation of
preconditions of actions or impossible actions might be used
to determine that certain interpretations are not possible, or
the current state of the robot might make “move the lever”
refer to a single specific lever, even if multiple levers exist.

We expand on all of these works by adding three necessary
components to the integration of language and action. The
ability to provide feedback appropriate to the understanding
of the system during a speaker’s utterance provides more
natural conversation. The ability of action to begin execution
of partially specified actions extends this by demonstrating
the understanding of the system through initial actions. The
online modification of running action scripts allows more
complex interactions under time and processing constraints,
and permits simultaneous execution of actions and clarifica-
tion of misspecified or underspecified referents. We discuss
these three contributions in greater detail in Section IV-D.

III. COMPONENT PARTS

Our overall architecture is based on the distributed inte-
grated affect, reflection, and cognition (DIARC) architecture
(discussed in [7]). The architecture is currently implemented
on an ActivMedia Peoplebot (P2DXE) with two Unibrain
firewire cameras mounted on a Directed Perception pan-
tilt unit, a Sick laser range finder, a Voice Tracker Array
Microphone, and two speakers.

The architecture is used as a testbed for a variety of in-
vestigations of human-robot interaction, ranging from simple
dialogue-like interactions for survey administration to more
complex interactions involving a variety of subsystems such
as vision, attention, action sequencing, affect, and dialogue.

Phonetic tokenization and resolution of speech is per-
formed by the Sphinx-4 language recognition system.1

Speech synthesis, when necessary, is performed by the
Festival speech production system, described in [8].

A. Action Management

Action selection and management is accomplished by a
goal-based system (described in [7]) in which the priority
of each goal determines whether the resources required to
achieve that goal are allocated to it. Procedural knowledge
in the form of action scripts serves as the basis for action
sequencing. When the architecture is presented with a goal,
a script that can accomplish that goal is retrieved from long-
term memory. In many cases, these scripted action sequences
are general descriptions of how a task can be accomplished,
and certain variables in the script must be bound to values
relevant to a specific context (e.g., a script describing how
to take an item to a location would require as parameters at
least the item to be transported and the destination). Action
descriptions in the script are then translated into concrete
actions (i.e., calls to other DIARC components, such as
motion, speech recognition, and speech production) by an
action interpreter subcomponent.

When multiple goals are being serviced concurrently, all
associated scripts are able to make progress toward their
goals, so long as no conflicts arise over resources. So, for
example, it would be possible for the robot to pursue the
goal of moving to some other location while at the same time
pursuing the goal of carrying on a direct conversation with
a person accompanying it to the new location. If, however,
their paths did not coincide, a conflict would arise between
the travel goal’s need to issue motor commands to move the
robot toward its destination and the conversation goal’s need
to issue motor commands to halt the robot to be able to
continue the conversation.

In these cases, the importance of each goal is combined
with the goal’s urgency to determine the goal’s priority. A
goal’s importance (i) is a measure of its utility (benefit b
minus cost c), possibly scaled by the influence of affective
states (ap and an, positive and negative affect, respectively)

1More information on Sphinx-4 is available from the project website at
http://fife.speech.cs.cmu.edu/sphinx/



in the architecture:

i = (1 + ap) · b − (1 + an) · c. (1)

The urgency (u) of a goal is a function of the total time
allocated to that goal (ta) and the time elapsed since it
was instantiated (te), possibly bounded by minimum and
maximum urgency values (umin and umax, respectively):

u =
te
ta

· (umax − umin) + umin. (2)

The product of the goal’s importance and urgency constitute
its priority:

p = i · u. (3)

When a conflict arises over a resource, the goal with the
higher priority obtains control of the resource, until the goal
is achieved or it is preempted by a yet higher-priority goal
(maybe even the same goal that formerly had a lower priority
if, for example, its urgency increases at rapid rate).

Having a high priority value is not sufficient to ensure that
a goal’s actions can execute. Other preconditions must also
be met, including the acquisition of all necessary information
for determining the parameters of an action. The main target
of DIARC is to explore aspects of human-robot interaction,
with the primary means of communication being verbal.
Thus, interaction with the discourse engine is both frequent
and crucial to goal achievement. The action management
component includes facilities to obtain needed information
from the natural language system for script execution, as well
as facilities to allow discourse to notify the goal manager
when the requested information is available (and, potentially,
to provide updates as new information is acquired).

A straightforward example is the “follow orders” goal. In
this case, the information required includes the action to be
executed (e.g., “move”), but may also include parameters
or other constraining information (e.g., “move to the home
base,” or “move forward until the path is blocked”). In
many cases, it is impossible (or impractical) for the robot to
proceed without having the parameters fully specified (e.g.,
it may not make sense to commence the “move to” goal
before finding out the destination, as any actions taken could
place the robot further from the goal than when it started).
However, there are other times when acquiring the additional
information can be postponed until it is needed. In either
case, the action manager requests a binding of type “action”
from the discourse engine and waits to be notified of the
response. When the binding arrives, the action interpreter
attempts to execute the script elements corresponding to the
command. If the command is fully specified (e.g., “stop”),
the script can execute. If the command is missing crucial
elements, as in the “move to” example above, the action in-
terpreter must postpone the action until they are provided. If,
however, the missing elements are not immediately needed,
it is possible for the robot to make some progress on the
goal before progress is blocked by the missing information.
The script begins execution while leaving open a “channel”
via which discourse can update the parameter list. If the

missing information is provided before it is needed, the script
proceeds exactly as it would have had the information been
present from the start. Otherwise the script will block at the
point where the new binding is required and will generate
another binding request for the discourse engine to acquire
the missing information.

B. Natural Language Processing

Our incremental discourse engine, called TIDE, is designed
to combat the problems of noise and processing time by
performing simultaneous incremental syntactic and semantic
processing of an utterance as it is being spoken. The in-
cremental nature of the processing system makes it robust
to misunderstood or incomplete speech, and its ability to
semantically process statements as they are being spoken
allows it to provide meaningful “back-channel” feedback
before the utterance is completed. Details on TIDE’s syntactic
and semantic engine (called RISE), its processing model,
algorithms, and reanalysis procedures (in the case of a
garden-path), are given in [1].

Of primary importance to this paper, TIDE incrementally
interprets utterances as they are being spoken. As each
word of the discourse is interpreted, meaningful partial
interpretations are passed to the action interpreter, marked
with an indicator of the completeness of the utterance. Simul-
taneously, so-called “back-channel” feedback indicating the
robot’s state of understanding (say, by nodding) or indicating
that reference has been established (say, by looking at the
object of reference) can also be requested. While any model
of feedback generation could be used to decide which type
of feedback to perform when, it is the basic theoretical
capability and not the model which is important to this paper.

In order to ensure that context is maintained across con-
versational topics within a conversation, TIDE extends RISE
through the addition of two persistent discourse structures: a
discourse context and an interaction template. The discourse
context represents the shared discourse history from the
current interaction (and potentially from the contexts of
past interactions). Its primary function is the resolution of
anaphoric expressions in conversation and the determination
of bindings for action scripts where they are not explicitly
stated. Discourse contexts in TIDE use an annotated stack
for maintenance of past referents, and fill in the most likely
recent referent that meets syntactic and semantic guidelines,
similar to the system proposed by [4]. References determined
by grammatical conventions (such as the implied actor in a
command) are maintained separately.

The interaction template provides a boilerplate for a sub-
ject of discourse, and contains syntactic/semantic structures
for words and their associated meanings.2 This prevents
confusion from sentences such as “This group has no iden-
tity,” the words of which have a very different meaning
in a mathematical context than in a sociological context

2In this context, the ‘meaning’ of a word is the internal representation
associated with it. For example, the ‘meaning’ of the command “move to
the left” is the action script startMoveLeft:rudy that will cause the robot to
move.



(suggested in [10]). The differences between these contexts
are determined by the context maintained in the interaction.

As a sentence is interpreted, semantic/syntactic structures
are pulled from the interaction template and used in a
constraint-propagation system to incrementally determine the
meaning of an utterance. In the case of commands, an
utterance is translated into the relevant action script with
appropriate variable bindings. Some of these bindings are
evident from the utterance (the actor in the case of a
command given to the robot, for example, is the robot itself),
some need to be determined from visual context (as described
in [1]), and some need to be determined from the discourse
context, as described above.

In the event that a necessary binding cannot be found,
a subinteraction is added to the interaction stack and a
clarifying question or set of questions is generated. A subin-
teraction adds the context of a limited interaction meant
to resolve the missing bindings. For example, if the robot
were asked to turn, it could generate the partial action script
“startTurn?direction”. Because this is not a useful partial
command, TIDE would ask “Which direction?” and generate
a subinteraction capable of understanding partial (and non-
grammatical) answers to that question. If the response came
back, “left”, the response would be appropriately inserted
into the action script, and the “startTurnLeft” action begun.
The subinteraction would then be removed from the inter-
action stack, since responses like “left” have no meaningful
syntactic nor semantic interpretation in the absence of an ap-
propriate context. Subinteractions do not replace the current
interaction, but rather temporarily add to it, so that if the
human were to answer the question with, “No, go straight”,
the utterance could be processed normally.

This separation of contextual information into “meanings”
(that is, interaction templates) and “memory” (in the form of
discourse contexts) allows a single conversation with a single
individual to maintain past referents despite changing topics
and modes of conversation (say, from a technical discussion
of mathematics to a more general discussion of sociology).

C. Integration Mechanisms

Communication between the action manager and TIDE
takes two main forms: the action manager can request data
of a specific type (e.g., “action” or “destination”) from
discourse, and TIDE can set those bindings in the action
manager. In the general case, the action manager determines
that some piece of information is missing (i.e, there is some
variable in the script representation that has not been bound
to a value) that it needs in order for the current goal to
progress. In many cases, the robot is able to fill in the missing
variable bindings directly by examining its environment (e.g.,
by having the vision system identify an object, or by having
the localization system determine the current position). In
some cases, however, it is necessary to get the needed
information from a human interlocutor. The action manager
requests a binding of the appropriate type from the discourse
engine, which uses the type information, along with other
information in the current context, to construct an appropriate

query. When TIDE has acquired the requested information,
it fills in the binding in the action manager via a “set” call.

In the example used below, the action manager requests
a binding of type “action,” indicating that it is ready to
accept commands from a human partner. As TIDE begins
understanding an incoming command, it passes partial in-
terpretations to the action manager so that the action can
be started as soon as possible. Each command passed in this
way is assigned a unique identifier so that later interpretations
of the same command are interpreted as refinements on the
initial interpretation rather than as separate commands.

In the event that an utterance completes without filling
in all the variable bindings required by the appropriate
action script, TIDE will search the discourse context for
an appropriate binding. If such a binding does not exist in
the discourse context, TIDE will generate a question and an
appropriate subinteraction to handle the result. Meanwhile,
TIDE sends the command to the action manager, leaving
empty variables in the place of the missing parameters. The
action manager can then begin to execute the action sequence
to the extent possible without the missing parameters. When
the human’s response has been interpreted and new infor-
mation is available, TIDE updates the running action script,
binding the new value to the (empty) parameter variable.

In the event that no further progress can be made by
the action manager without bindings for missing parameters,
it can generate explicit binding requests for TIDE. As the
discourse engine does not have full access to the procedural
knowledge encoded in the action scripts, it is not always
possible for it to anticipate which variable bindings will be
needed soonest. Explicit binding requests from the action
manager forcibly prioritize the bindings currently most cru-
cial to making progress toward the current goal.

IV. EXAMPLES OF BEHAVIOR

Some benefits of the integration mechanisms described
above are demonstrated here using a hypothetical planetary
exploration task. The following scenario is a variant on a
task used many times in experiments with human subjects
and the Peoplebot described above to study various aspects
of human-robot interaction. The human and the robot form a
team whose goal is to transmit data collected on the surface
to an orbiting satellite. The signal from the satellite is only
strong enough for transmission at certain locations on the
surface. The robot serves both as transmission hardware and
data storage mechanism (so data need not be transferred to
the robot before sending), and it keeps track of the nearest
detected transmission point. It is assumed that satellite time
is expensive, so transmissions must be kept to a minimum.

The data has been separated into several different types,
so that only the types that are needed must be uploaded to
the satellite. When a human gives the order to upload a given
type of data, the robot must move to the nearest transmission
point and then transmit the appropriate data to the satellite.
In the examples described here, the human initially does
not specify which type of data, so this information must be
determined by continued discourse. We present below three



system traces of interactions with the robot demonstrating
three different levels of integration.3

We have previously used the DIARC architecture and
variants on our exploration task in several experiments,
both with and without humans. A previous version of the
architecture, action manager, and natural language processor
was presented at AAAI 2006, where it received an award for
natural language processing and action execution [7].

A. Unintegrated: Collect and pass on

Perhaps the most common standard of integration between
components, the first level of integration requires very little
communication between the discreet modules. The discourse
engine knows what parameters must be passed for each
action script, and fills them before sending the completed
command to the action manager.
Brady: Upload the data.
<Discourse Interaction - Explorer got

command:[upload:rudy:?datatype]>
Rudy: Which data type?
Brady: Images.
<Discourse subinteraction - datatypeFinder

datatype:[image] for
command:[upload:rudy:image]>

{Action Manager got binding:
command:[upload:rudy:image]}

{Action Manager begins
action:[upload:rudy:image]}

Rudy begins to move.
...
Rudy reaches transmission point.
Rudy transmits image data.

Notice that no actions are begun before the entire ex-
change is completed. The human issues the command with
incomplete data, and the robot asks clarifying questions until
all the appropriate bindings are filled. The action manager
then receives a complete action specification, which it then
executes. While this strategy takes little effort to implement,
and provides a minimally useful level of interaction, valuable
time is wasted while the robot waits for the command before
moving to the transmission point.

B. Partially integrated: Ask and ye shall receive

With partial integration, more interaction between the
systems is possible (and likely). Partial integration allows
the discourse engine to respond to binding requests with
incomplete matches, such as action specifications with un-
bound parameters. When action execution stalls because of
an unbound variable, the action manager requests a new
binding to fill the parameter.

Because the discourse engine only responds to explicit
requests from the action manager, it will send incomplete
action specifications when no bindings are available in the
current context. When action subsequently requests a binding
of type datatype, discourse spawns a subinteraction and asks
the human partner for more information.
Brady: Upload the data.
<Discourse Interaction - Explorer got

3These traces are intended to demonstrate the functioning of the system,
and as such have been edited, annotated, and reformatted.

command:[upload:rudy:?datatype]>
{Action Manager begins
action:[upload:rudy:?datatype]}
Rudy begins to move.
...
Rudy reaches transmission point.
{Action Manager requests binding of

type datatype from Discourse}
<Discourse processing binding request>
Rudy: Which data type?
Brady: Thermal data.
<Discourse subinteraction - datatypeFinder

datatype:[thermal]>
{Action Manager got binding:

datatype:[thermal]}
Rudy transmits thermal data.

Notice that in this scenario, the discourse engine sends the
upload command to action with the datatype unbound. When
action reaches the point where it requires that binding, it
requests the type from the discourse engine, which generates
a subinteraction as before.

Although this approach does allow the robot to make
progress toward achieving its goals even when complete
action specifications are unavailable, there is the potential
for confusion or even failure, as the robot may not detect
the missing parameter until much later (e.g., the transmission
point may be far away, and the human partner may not ac-
company the robot there). A better solution would recognize
the missing parameters and proactively attempt to bind them,
without impeding actions that do not rely on missing values.

C. Fully Integrated: Modify on the fly

In our final level of integration, the discourse engine has
the ability to modify the parameters of an executing action
without interruption. This allows the discourse engine to
continue the conversation and request the bindings needed
for an action while the action manager begins execution of
the action script.

Brady: Upload the data.
<Discourse Interaction - Explorer got

command:[upload:rudy:?datatype]>
{Action Manager got binding:

command:[upload:rudy:?datatype]}
{Action Manager begins

action:[upload:rudy:?datatype]}
{Action Manager step 1:

action:[move:Rudy:transmitPoint]}
Rudy begins to move.
<Discourse created subinteraction:

datatypeFinder>
Rudy: Which data type?
Brady: The maps.
<Discourse subinteraction - datatypeFinder

datatype:[map]>
{Action Manager got binding updates:

action:[upload:rudy:map]}
...
Rudy reaches transmission point.
{Action Manager step 2:

action:[transmit:rudy:map]}
Rudy transmits map data.

Notice that the execution of the partial command up-
load:rudy:?datatype begins by the time the utterance is
complete, while conversation continues with the human
partner. As more information becomes available to the robot,



the discourse engine fills in the missing bindings in the
executing action context so that the action can complete
without interruption.

This approach solves the problems of both the above
approaches simultaneously, as well as allowing additional
capabilities, such as back-channel feedback, described above.

D. Discussion

The experimental runs presented above highlight the short-
comings of fully modular NLP and action management
subsystems and demonstrate some advantages provided by
the integration capabilities of TIDE and DIARC. Incremen-
tal speech processing allows on-line, meaningful nonverbal
feedback concurrent with further speech processing. The
system is able to initiate actions that are not fully specified
and allows on-line modification of executing scripts (e.g.,
to “fill in” missing parameters for a running script). The
example traces presented above are intentionally simple, to
make it easy to distinguish between them. However, the
capabilities presented are applicable to many, more realistic
scenarios, each of which can benefit greatly from integration
of the kind we propose here.

Consider the situation of a robot separated from its op-
erators by a long distance (say, from a rover on Mars to
a base on Earth) in a similar scenario to the one detailed
above. A robot which is able to initiate underspecified actions
could begin to locate an appropriate transmission point while
waiting (approx. forty minutes) for the response from Earth
about which data to transmit. If the transmission window is
limited, the time savings could mean the difference between
a successful transmission and the need to wait another day
to upload the data.

Consider also cases in which a complex action sequence
is currently being carried out by the robot, and some part
of the order needs to be amended (e.g., because it was
incorrect or because new information became available). For
example, if the robot began to move towards the transmission
point and then heard “no, transmit the mineral data instead”,
the ability to alter running scripts would allow the robot to
correct its action (and transmit the appropriate type of data)
without incurring the delay of canceling the current action
and replanning an entire new action.

Finally, consider a robot with limited computation allotted
for planning. The integration capabilities of the action man-
ager are not NLP-specific; other subsystems that generate
action specifications can also take advantage of the mecha-
nisms described above. For example, the ability to execute
partial plans could allow the robot to design a “rough” plan
and begin executing it while simultaneously constructing a
refined plan to be substituted in when ready.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Beginning with the observation that human action selec-
tion and language processing systems are tightly coupled, we
argue that the lack of genuine integration between language
processing and action execution systems in robotic systems
makes many aspects of human natural language interaction

difficult, if not impossible. A finer-grained integration of
these systems can have a dramatic effect on their ability
to perform certain tasks, and in some cases can provide
performance advantages to autonomous robot systems. We
presented a system that implements this finer integration, and
showed by example how it is able to perform these tasks in
a way that is both more optimal and more “human.”

Future directions involve the inclusion of more metadata
in the interaction of the two systems so that requests from
the action management system can be more gracefully re-
quested in natural language. A predictive system capable of
anticipating new needs before and as they arise and request
expected bindings before they are needed will improve sys-
tem reactivity. The increased planning ability this provides
will simultaneously add to the robot’s ability to deal with
strange and unexpected circumstances.

To completely evaluate the online utility of the system, a
human study comparing task performance on an explore-
and-report task such as the one examined in Section IV
could be performed. It is expected that the theoretical results
reported in this paper would accumulate into a noticeable
improvement in task performance time.

As robotic systems become more sophisticated, the inte-
gration between their component parts becomes more and
more crucial to their everyday operation. A sensitivity to
the way that humans interact, and a fine-grained integra-
tion between modules of such complicated products will
ultimately lead to robotic systems that are more capable
of simultaneously acting optimally and interacting naturally
with humans.

REFERENCES

[1] T. Brick and M. Scheutz. Incremental natural language processing for
HRI. In Proceedings of the 2nd ACM International Conference on
Human-Robot Interaction, page forthcoming, 2007.

[2] Rebecca Fay, Ulrich Kaufmann, Heiner Markert, and Gun̈ther Palm.
Integrating object recognition, visual attention, language and action
processing on a robot in a neurobiologically plausible associative
architecture. In Proceedings of the AI-Workship on NeuroBotics, Ulm,
Germany, 2004.

[3] Will Fitzgerald and R. James Firby. The dynamic predictive memory
architecture: Integrating language with task execution. In Proceedings
of the IEEE Symposia on Intelligence and Systems, Washington, D.C,
1998.

[4] Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and
the structure of discourse. Comp. Ling., 12(3):175–204, 1986.

[5] Nikolaos Mavridis and Deb Roy. Grounded situation models for
robots: Bridging language, perception, and action. In AAAI-05 Work-
shop on Modular Construction of Human-Like Intelligence, 2005.

[6] P. McGuire, J. Fritsch, J. J. Steil, F. Roẗhling, G. A. Fink,
S. Wachsmuth, G Sagerer, and H. Ritter. Multi-modal human-machine
communivation for instructing robot grasping tasks. In IROS 2002,
Lausanne, Switzerland, 2002.

[7] P. Schermerhorn, J. Kramer, T. Brick, D. Anderson, A. Dingler, and
M. Scheutz. Diarc: A testbed for natural human-robot interactions. In
Proceedings of AAAI 2006 Robot Workshop, page forthcoming, 2006.

[8] Paul A Taylor, Alan Black, and Richard Caley. The architecture of
the festival speech synthesis system. In The Third ESCA Workshop in
Speech Synthesis, Jenolan Caves, Australia, 1998.

[9] Roel M. Willems, Asli Özyürek, and Peter Hagoort. When language
meets action: The neural integration of gesture and speech. Cerebral
Cortex, 2006.

[10] Terry Winograd. Understanding Natural Language. Academic Press,
1972.


