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Abstract

Much progress has been made in automated facial im-
age analysis, yet current approaches still lag behind what
is possible using manual labeling of facial actions. While
many factors may contribute, a key one may be the limited
attention to dynamics of facial action. Most approaches
classify frames in terms of either displacement from a neu-
tral, mean face or, less frequently, displacement between
successive frames (i.e. velocity). In the current paper,
we evaluated the hypothesis that attention to dynamics
can boost recognition rates. Using the well-known Cohn-
Kanade database and support vector machines, adding ve-
locity and acceleration decreased the number of incorrectly
classified results by 14.2% and 11.2%, respectively. Aver-
age classification accuracy for the displacement and veloc-
ity classifier system across all classifiers was 90.2%. Find-
ings were replicated using linear discriminant analysis, and
found a mean decrease of 16.4% in incorrect classifications
across classifiers. These findings suggest that information
about the dynamics of a movement, that is, the velocity and
to a lesser extent the acceleration of a change, can helpfully
inform classification of facial expressions.

1. Introduction

Facial expression is a rich and intricate source of in-
formation about the current affective state of a human be-
ing [20]. While humans routinely extract much of this in-
formation automatically in real life situations, the system-
atic classification and extraction of facial expression infor-
mation in the laboratory has proven a more difficult task.
Human-coded classification systems, such as the Facial Ac-
tion Coding System (FACS) [18, 19] rely on people exam-
ining individual frames of video to determine the specific
units of deformation of the face shown in each video frame.
This type of analysis requires long training times, and still
shows subjective error in rating [25, 12].

Yet why should this seem so difficult when a variant of
it is performed routinely in everyday life? Converging evi-
dence from psychology indicates that one major aspect that
aids in the recognition of facial expression and affect is in-
formation about the dynamics of movement. For example,
Ambadar et al. [1] demonstrated differences between the
dynamic characteristics of true versus false smiles. Simi-
larly, Bassili [5, 6] showed that humans can detect the emo-
tional content of facial expressions merely from a moving
point-light display of those expressions.

In spite of this converging evidence most automatic
recognition engines use only static displacement; that is, the
distance between the features on the current image and the
location of the same features on a canonical “neutral” face
at a single moment in time. In general, the procedure for this
sort of classifier involves extracting features from a video
stream and examining the parameter values for each frame
of that video in isolation. The general architecture of such a
classification system usually consists of some form of track-
ing, such as optical flow [14] or a feature detector like Ga-
bor filters [4] to find features in each frame of raw video,
and then a second stage that operates on the frame-by-frame
output of the feature detector. Even those classifiers that
do utilize frame-to-frame changes, (such as Pantic and Pa-
tras [27]) use an explicitly-built set of rules customized to
the specific AUs and viewpoints of their study. Their ap-
proach is therefore limited to the views and action units
for which the dynamic profiles have been explicitly char-
acterized. They also evaluated their classifier as a whole,
without noting the specific contributions of velocity and ac-
celeration. The current paper provides a general means of
allowing standard classifiers to learn how to incorporate ve-
locity and acceleration information and use that information
without explicitly designed rules of motion, and explores
the relative contributions of velocity and acceleration across
several different action units. It further presents the method
of Local Linear Approximation as a computationally effi-
cient method for calculating acceleration and velocity in a
manner robust to noise and easy to calculate “on the fly”.
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In order to avoid the need for a more complex classi-
fier to handle this added information, instantaneous veloc-
ity and acceleration are estimated at each video frame, and
presented as additional feature vectors for use by a stan-
dard frame-by-frame classifier. The current paper presents
a technique for extracting these dynamic components of
movement using a local linear approximation of velocity
and acceleration, and provides a comparison between a
standard, displacement-only, technique and a similar tech-
nique applied to displacements with velocity and accelera-
tion information included.

2. Methods
2.1. Image Processing

Facial Action Coding System (FACS). The FACS [18,
19] is the most comprehensive, psychometrically rigorous,
and widely used manual method of annotating facial ac-
tions [13, 20]. Using FACS and viewing video-recorded
facial behavior at frame rate and slow motion, coders can
manually annotate nearly all possible facial expressions,
which are decomposed into action units (AUs). Action
units, with some qualifications, are the smallest visually dis-
criminable facial movements. FACS has been selected as
the coding system for this paper because of its ubiquity and
comprehensiveness.

We selected 16 AUs for this study, following the selec-
tions made in [14]: FACS AUs 1, 2, 4, 5, 6, 7, 9, 12, 15,
17, 20, 23, 24, 25, 26 and 27. Together, these provide a
relatively complete sampling of the different regions of the
face, including brow, mouth, and eye regions. We intend
these only as a demonstration of the benefit of using veloc-
ity and acceleration information, not as a exhaustive list of
the abilities of the technique.

Image Corpus. Image data were from the Cohn-Kanade
Facial Expression Database [14, 22]. Subjects were 100
university students enrolled in introductory psychology
classes. They ranged in age from 18 to 30 years. Sixty-five
percent were female, 15 percent were African-American,
and three percent were Asian or Latino. They were recorded
using two hardware synchronized cameras while perform-
ing directed facial action tasks [17]. Video was digitized
into 640 x 480 grayscale pixel arrays.

The apex of each facial expressions was coded using the
FACS [18] by a certified FACS coder. Seventeen percent of
the data were comparison coded by a second certified FACS
coder. Inter-observer agreement was quantified with coef-
ficient kappa, which is the proportion of agreement above
what would be expected to occur by chance [11, 21]. The
mean kappa for inter-observer agreement was 0.86, indicat-
ing good agreement. Action units which occurred a mini-
mum of 25 times and were performed by a minimum of 10

different people were selected for analysis.

Active Appearance Models. Active Appearance Models
(AAMs) are a compact mathematical representation of the
appearance and shape of visual objects [15]. After model
training, AAMs can be used to recreate the shape and ap-
pearance of the object modeled. By using a gradient-
descent analysis-by-synthesis approach, AAMs can track
the deformation of a variety of facial features including
both shape deformations (such as jaw movements) and
appearance deformations (such as changes in shading) in
real-time [26]. Each image sequence was processed using
AAMs. The AAMs applied to this corpus tracked 68 point
locations on the face of each individual. Figure 1 shows
the arrangement of points on two different video frames, as
placed by the AAM. The locations of these points, as placed
by the AAM, serve as the initial primary data for this study.

Image Alignment. As with prior studies (e.g. [14]), all
image sequences began with a canonically neutral face.
Each sequence was aligned so that the location of the first
image was taken to be zero. Hence every image in sequence
is defined in terms of displacement from the neutral face.

Velocity and Acceleration Estimates. Given a time se-
ries, like a sequence of feature point locations, one can es-
timate the instantaneous rate of change in position (i.e. ve-
locity) and also estimate the change in velocity, known as
acceleration. The instantaneous rate of change is estimated
by using the change in position. Similarly, the acceleration
is estimated by using the change in velocity. After a time
series is collected, the first estimation step is to perform a
time-delay embedding [29]. The basic principle is to put
the one-dimensional time series into a higher-dimensional
space that can accurately represent the dynamics of the sys-
tem of interest. As an example, consider the time series
P given by p1, p2, p3, . . . , p8. The one-dimensional time-
delay embedding of P is given by P itself and cannot ac-
count for dynamical information. The time-delay embed-
ding in dimension two is given by a two-column matrix with
pi in the ith entry of the first column, and pi+1 in the ith en-
try of the second column. A four-dimensional embedding
was performed for the present analysis to allow for the use
of dynamical information and to filter some noise from the
data. The four-dimensional embedding of our example time
series P is given by P (4) in equation 1.

P (4) =


p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

p4 p5 p6 p7

p5 p6 p7 p8

 (1)



Figure 1. Examples of facial images. Colored dots indicate AAM-tracked point locations.

The next step, after a time series is embedded is to es-
timate velocity and acceleration by local linear approxima-
tion, a variant of a Savitzky-Golay filtering [30]. To do this
for velocity, we calculate the change in position between the
same point at two adjacent times, and average over several
of these changes. The simplest version of this velocity cal-
culation uses only two time-points per estimate and takes
the frame-to-frame differences. However, because of the
use of only two frames, this does not allow for an estimate
of acceleration. Moreover, using three time points can be
overly sensitive to error [8]. Thus, a weighted sum of four
frames of positions was used to calculate a more robust es-
timate of velocity. A similar process is used to average the
differences between estimated velocities to estimate the in-
stantaneous acceleration.

When using four time-points, and hence a four-
dimensional embedding, to estimate position, velocity, and
acceleration, the weighting matrix W is always given by
equation 2

W =


−0.0625 −0.3 0.5
0.5625 −0.1 −0.5
0.5625 0.1 −0.5
−0.0625 0.3 0.5

 (2)

where the first column provides the weights for the re-
estimation of position, which here is displacement from the
neutral face. The second column estimates velocity; the
third column, acceleration. These weights are determined
analytically based on the ubiquitous relationship between
position, velocity, and acceleration. See [7] for details.

The approximate derivatives of any four-dimensionally
embedded time series X(4) are given by equation 3,

Y = X(4)W (3)

where W is the weighting matrix, and Y contains the po-
sition, velocity, and acceleration estimates. As can be seen

from equation 3, velocity and acceleration for an arbitrar-
ily long but finite time series are calculated with a single
matrix multiplication which, on virtually every platform, is
fast and computationally efficient. Moreover, in the case
where velocity and acceleration are being estimated in real-
time concurrently with the feature points, then using these
dimensions at each time point only requires an extra 12 mul-
tiplications and 9 additions per feature point, which should
not cause any significant slowdown.

Additionally, if one desires to estimate the dynamics of
many feature points instead of only a single point, then one
merely constructs block diagonal matrices for the embed-
ded sequences and for the weighting matrix. There will be
a separate block for each feature point used. The original
weighting matrix is same for every one of its blocks. An
example using three embedded point sequences is provided
by equation 4, where Y contains the position, velocity, and
acceleration for feature points one, two, and three; W is the
weighting matrix, and Xi is the embedded time series for
feature point i.

Y =

 X1 0 0
0 X2 0
0 0 X3

  W 0 0
0 W 0
0 0 W

 (4)

One should also note, because of the sparseness of the ma-
trices involved in the multiplication, this calculation is also
highly efficient.

2.2. Data Analysis

Classifiers In order to evaluate the added benefit of in-
cluding information about the dynamics of facial movement
on classification accuracy, support vector machines (SVMs)
were chosen. SVMs are linear classifiers that have been
commonly used in the literature (for example, [3, 2, 32]),
and are available in many pieces of software. For this anal-
ysis, the kernlab package in R was used to train and



evaluate SVM performance [23, 31]. The kernlab pack-
age provides an interface to the commonly used libsvm
framework [10]. SVMs were chosen for this analysis be-
cause they represent a simple, common classifier that is
well-known in the community.

Support Vector Machines are a form of classifier used
to distinguish exemplars of different classes in multidimen-
sional space. Each SVM essentially forms an n − 1 di-
mensional hyperplane in the space created by the n feature
vectors, oriented so as to maximize the distance between
the hyperplane and the nearest exemplars of each class. Ob-
jects falling on one side of the hyperplane are considered to
be in one class. More information about SVMs is available
from [16].

In order to demonstrate that the benefits of this added
dynamic information are not unique to a single type of clas-
sifier, we replicated our study using Linear Discriminant
analysis. Linear Discriminant analysis has also been used
previously in the facial expression literature, and details on
both the mathematics behind it and an example usage can
be found in [14].

10-Fold Cross-validation Subjects were divided ran-
domly into ten subsets, with random redraws occurring until
each subset included at least one exemplar for each of the
AUs of interest. Each subject was included in only one sub-
set, with all images of that subject being relegated to that
subset. 10-fold cross-validation was then performed, where
a classifier was trained on 9 of the subsets, and then tested
on the 10th. This was repeated, leaving a different subset
out of the training set each time. Thus each subject was
tested once by a classifier which was not trained on data
that included that subject’s face. A total of 6770 individual
frames were estimated, of which roughly ten percent exhib-
ited any given facial action unit.

In each case, first a classifier was trained using only dis-
placement data, that is, the distance at each time point be-
tween the current facial location and the location during the
first (neutral) frame. A second classifier was trained us-
ing position, and the velocity estimated by the local linear
approximation procedure described above. Finally, a third
classifier was trained using displacement, estimated veloc-
ity, and estimated acceleration. In each case, classifiers
evaluated each image in a sequence as though it were an
independent observation; that is, no time information other
than the estimated positions, velocities, and accelerations
was used. A separate classifier was trained for each action
unit to be classified.

Independence It is worth noting that the addition of ve-
locity and acceleration information causes a dependency to
develop between successive frames. That is, the velocity
data from frame 3 is influenced not only by frame 3, but by

the locations of features in frames 1, 2, 3, and 4. Similarly,
the velocity estimate for frame 4 is influenced by frames
2, 3, 4, and 5. This necessarily induces some dependency
between successive measures, and violates the standard re-
gression assumption of independence. However, because
the testing set is entirely distinct from the training set (that
is, there is no dependence between any measure in the test-
ing set and any measure in the training set), dependencies
within the training set have no effect on our estimates of
precision and accuracy of the classifier. No attempt is made
to remove these dependencies within the testing set, since,
in general, such a classifier is likely to be used on real video
data, and as such be faced with the same sorts of dependen-
cies we present here. In short, we allow for some violation
of the standard assumptions used for classification in order
to provide estimates that are likely to be more valid for the
application of this technique.

Because the three classifiers evaluating a given action
unit are trained and tested in the same way, meaningful
comparisons can be made. The difference between these
classifiers can be attributed solely to the inclusion of infor-
mation about the estimated dynamics of the expression.

3. Results
When velocity information was included as input to the

classifier, it showed a median increase in true positive iden-
tification of 4.2% over displacement-only classification for
the testing set with a corresponding 3.1% reduction in false
positive rate. Because each individual classification carried
only a small proportion (mean: 21.3%, median: 14.6%) of
the total set, mean change in total accuracy was only 2.9%.
While this number is relatively small in absolute value, it
results in as much as 31% fewer incorrectly classified in-
stances for some AUs (mean: 14.2%, N = 16).

It is worth noting that not all AUs are better classified
in all cases by the addition of this information. For exam-
ple, AUs 4 and 26 appear to show no real gain, or even a
slight loss overall. This is likely due to the already high
classification rate of that classifier, and the relatively poor
performance of an SVM when faced with noisy data. It is
worth noting that the only classifier to actively lose accu-
racy with the addition of velocity or acceleration informa-
tion is AU 26, which is demonstrated in less than 10% of the
training examples–a larger proportion of training examples
might show better results. Acceleration information does
not provide a consistent benefit above velocity information
(mean: .4%), but does provide some benefit in finding many
AUs (range: -.3% to 2.1% increase in true positive classi-
fication). Taken together, these results imply that accelera-
tion information plays a differential role in identification of
distinct AUs.

Examination of the Reciever Operating Characteristic
(ROC) curves for the specific classifiers, however, shows



AU AU Percentage X only X+X’ X + X’ + X”
1 28.2 0.840 0.877 0.872
2 18.2 0.917 0.940 0.942
4 34.7 0.802 0.831 0.834
5 14.6 0.887 0.905 0.896
6 23.9 0.935 0.956 0.954
7 24.3 0.940 0.955 0.950
9 10.0 0.951 0.964 0.963
12 26.8 0.909 0.935 0.928
15 14.6 0.909 0.928 0.923
17 33.9 0.857 0.902 0.910
20 13.4 0.906 0.919 0.917
23 12.5 0.899 0.916 0.916
24 12.2 0.905 0.916 0.918
25 57.8 0.860 0.898 0.896
26 8.3 0.918 0.915 0.913
27 14.6 0.918 0.952 0.944

Table 1. Proportion of correctly classified instances using displace-
ment, displacement and velocity, or displacement, velocity, and ac-
celeration. Second column indicates percentage of total instances
exhibiting the given AU.

AU X vs. X+X’ X vs X+X’+X”
1 0.127 0.034
2 0.255 0.253
4 -0.036 -0.121
5 0.125 0.147
6 0.082 0.016
7 0.092 0.131
9 0.218 0.222
12 0.158 0.028
15 0.116 -0.002
17 0.237 0.357
20 0.246 0.193
23 0.169 0.199
24 0.133 0.096
25 0.026 -0.144
26 0.006 0.027
27 0.315 0.364

Table 2. Proportion of reduction in false negative classifications.

that acceleration information does have some influence at
different levels of discrimination. Figure 2 shows some of
the common patterns of influence. It is worth noting that
even in AU 26, where the gain is lowest, velocity informa-
tion does play a role if a stricter (< 50% probability) re-
quirement is enforced.

Details about the individual benefit provided for the clas-
sification of each of the individual AUs is shown in Table 1,
and percentage reduction in false negative results corrected
is shown in Table 2.

In order to ensure that the improvement was not solely
due to the SVM classifier, the experiment was repeated with
linear discriminant analysis (LDA) classification. Again,
the mean increase in overall classification was 4.5%, now
accounting for 16% of the incorrectly classified instances.

For training set, the impact of velocity and acceleration
was larger. SVM classifiers using velocity information in-
creased in overall accuracy by about 1%, decreasing the
number of incorrect instances by 32.3%. LDA classifiers
using velocity information also increased accuracy by about
1%, about 51.7% of incorrectly classified instances.

4. Discussion
Psychological evidence shows that humans are able to

distinguish facial expressions using primarily motion infor-
mation and that modification of the characteristics of mo-
tion influence the interpretation of the affective meaning of
facial expressions [28]. The dynamics of facial movements,
therefore, carry information valuable to the classification of
facial expression.

Several recent attempts have been made to incorporate
some form of time-related information into the classifica-
tion of facial expression. For example, Tong et al. [32] used
dynamic interrelations between FACS codes to provide bet-
ter informed priors to a Bayesian classifier tree. Lien [24]
used Hidden Markov Models (HMMs) for classification,
which take into account some measure of the relationship
between successive frames of measurement. Yet these ap-
proaches are primarily focused on using co-occurrence and
common transitions to influence the bias (specifically, the
Bayesian priors or HMM transition probabilities) of other
analyses on a larger scale. Yet a large amount of local in-
formation is available as well, in the form of instantaneous
velocities and accelerations. This information is local, easy
to approximate on-the-fly, and can be passed to existing
classification engines with minimal changes to the classifier
structure. We have demonstrated that this information can
be calculated with minimal computational overhead, and
provides a noticeable gain in classification accuracy.

The classifiers used for this example are relatively sim-
ple and are intended primarily as an illustration of the ben-
efit to be gained by the addition of dynamic information. It
is important to note, however, that the benefits of estimated
dynamics are independent of the specific model being used.
While velocities and accelerations are easiest to understand
concerning a structural model of the face, even such higher-
level constructs as the formation of wrinkles must have a
rate of change, such as might be evidenced by the rate of
increase in the classification probability being reported by a
Gabor-filter-based classifier. This rate-of-change informa-
tion could be calculated in a manner identical to the calcu-
lation of the velocities of point movements described here,
and included as regular features in the higher-level model.
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Figure 2. Representative ROC curves for classifiers trained using displacement only, displacement and velocity only, or displacement,
velocity, and acceleration. Error bars indicate estimated standard errors of the mean true positive rates over 10-fold cross-validation.
In all cases, addition of velocity and acceleration improved or unchanged fit along the entire curve.

This study is limited by the use of laboratory-collected,
intentionally expressed faces. It is possible that real-world
faces will have different profiles of velocity and accelera-
tion than laboratory-collected facial expressions. Even if
this should be the case, a classifier trained on real-world ex-
pressions should still benefit from the addition of velocity
information, and might even be able to distinguish between
intentional and unintentional faces in this way.

No examination of the race or gender of the participants
was made with reference to either the testing or training
sets. Because participants were randomly assigned to cross-
validation subsets and all testing subsets were evaluated,
the impact of such groups should be minimal. An interest-
ing question about the generalizability of dynamic profiles
across race and gender remains open.

Another possible limitation is the potential impact of
global head movements on the accuracy of classification.
With only a few minor exceptions, sequences in the Cohn-
Kanade Database [22] begin with a neutral expression and
show negligible variation in head translation, rotation, and
scale. Because every head began and generally remained
in a canonical position, every frame in a sequence was not
first normalized to a canonical head position; it was already
quite close. As a result, some small amount of variance in
the displacements, estimated velocities, and estimated ac-
celerations can be attributed to global head movements. If
these head movements do not covary with facial expres-
sions, then might be inhibiting accurate classification by
adding noise. On the other hand, if global head move-
ments meaningfully co-occur with facial expressions, then
this may be aiding accurate classification. The current study
also examines only a series of intentional, face-forward fa-
cial movements in a laboratory setting, which most likely
reduces the frequency and magnitude of these head move-
ments. Further work includes studying these effects in a

more general setting, such as natural conversation.
As opposed to being a handicap, some of the benefit from

velocity information may be attributable to the covariance
of global head movement and facial expression. For ex-
ample, the smiles used to indicate embarrassment and en-
joyment are characterized by many of the same facial mus-
cle movements (e.g. open mouth, intense contraction of the
modioli), but differ markedly in the associated head move-
ments. Similarly, surprise is often associated with upward
head movement [9]. The dynamics of head motion and fa-
cial action each provide important information for the un-
derstanding of affect as related by facial expression. This
implies that in addition to helping the classification of AUs,
velocity and acceleration information might be more ben-
eficial to the classification of affective state given a set of
classified AUs.

This paper has demonstrated a computationally light
technique for online calculation of velocity and acceleration
of feature points, and provided evidence for the benefits that
this technique provides to classification accuracy. We have
presented an argument that the use of this form of dynamic
information will provide a benefit to a wide range of classi-
fication techniques.
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